If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-19=161
We move all terms to the left:
2x^2-19-(161)=0
We add all the numbers together, and all the variables
2x^2-180=0
a = 2; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·2·(-180)
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{10}}{2*2}=\frac{0-12\sqrt{10}}{4} =-\frac{12\sqrt{10}}{4} =-3\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{10}}{2*2}=\frac{0+12\sqrt{10}}{4} =\frac{12\sqrt{10}}{4} =3\sqrt{10} $
| 8-3=20-6x | | 5c-19=c+17 | | 6t+6=-42 | | 6t+6=42 | | 18x^2-21x-60=0 | | `x^{2}-10x-24=0` | | 3c÷14=23 | | 9-4x=42 | | 3x–x+4=4(2x-1) | | 2a÷4=16 | | 5x-14+2x=35 | | 5/100x=15 | | 7x-2=1=3x | | 1.2x+4=x+3 | | 3(u-8)-8u=1 | | x+117+135=180 | | 2·(x-10)=16-2x | | -6z=20 | | .2y+5=-9 | | 5x=15+14 | | 7x+2=2(3x-3) | | x+90+133=180 | | 4n+8=45 | | 39+90+9x-3=180 | | 5x-4=(1x+4) | | 60+6x-15+4x+10=180 | | 5x^2-360=-60x | | 10x+135=-8-2x | | 3(3-4x)=33 | | 3(3+4x)=33 | | x^2+18x+12.5=0 | | 2x+8x–6=4 |